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Abstract

There are several very fast direct methods which can be used to

solve the discrete Poisson equation on rectangular damains. We show that

these methods can also be used to treat problems on irreguiar regions.




1. Introduction. Within the past few years, several very fast and accurate
direct methods have been developed for solving finite difference approximations

to the Poisson equation,

f in R,
g on OR .

These methods can usually be applied only on rectangular regions, although the

Au

u

differential operator and boundary conditions can be more general than those in
the Poisson equation. In this paper, we will show how these algorithms for
rectangular domains can also be used effectively on irregular regions. The
approach used is similar to that emplcyed by Hockney [16, 17], Buneman {7],

and George [1}]. We also mention the werk of Angel [1-4], Angel and Kalaba [5],
Collins and Angel [9], Kalsva [20]1, end Roache [22] on the use of direct methods
for problems in irregular regions.

We will not discuss the details of any specific direct methnd. A survey
of these procedures is given in [11], and in particular we cite the recent work
of Buneman (6], Buzbee, Golub, and Nielson [8], and Hockney [16].

We will also not consider the derivation of the finite difference equations
that approximate the partial differential equation. This subject is treated in
detail by Forsythe and Wasow [13], and we assume that the problem has been
reduced to finding the solution of a matrix equation Ax = y . The matrix A
is frequently very large and sparse, but its structure does not permit the
application of the most efficient direct methods. For our computational procedure,
we alter certain rows of A to obtain a matrix B, and we will show how to
define a modified right-hand side Z 80 that the solution X also satisfies the

equation PEx = z . The matrix B 1is chosen so that these equations can be

solved by the direct methods.
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This method is computationall:s advantageous when we are s0lving a

sequence of equations Ax. = I3

~

This situation frequently arises in

time-dependent partial differential equations, in nonlinear problems, and in

~inear problems where the right-hand side is varied but the region and

differential operator remain the same. After some initial computation, each

solution xi can be cbtained in

~

¢pproximately twice the time required for

~

the solution of an ejuation Bx = z

In Sections 2 and 3 we derive this algorithm in a general form. We

describe a number of applications of the method in Sections L and 5, and in

Section +- we present some computational results.




2. Method of Solution if detB £ . Suppose that we are given an n by n

matrix A and an integer p with 1< p<n. We wish to modify p rows of A
to obtain another matrix B. Without loss of generality we assume that the
first p rows of A are to be changed, since we can achieve this situation
by multiplying A by a suitable permutation matrix, However, we emphasize
that this multiplication should not be done explicitly in the computational
procedure, Rather, the rearrangement of rows should be done implicitly by
indexing., The direct methods mentioned later in the paper require that B
has a particular structure, which couvld be altered by the permﬁtation
transformation.

Partition A in the form

vhere A, is a p by n matrix and A, is an (n-p) by n matrix, We then

write

where Bl is a p by n matrix, For the remainder of this section, we
assume that detB £ 0.
Suppose we are given a linear equation Ax = AR We partition y in

the same way as A, and write

b

&

W



Let 2 be ary vector of the form

=<

If W is &n arbitrary nonsingular p by p matrix, we define an n by p

1<
L‘<I

Y2/

matrix W by

Define the p by p matrix C by

¥*
Following Hockney [16], we call C the capacitance ma.tr:Lx.J Assume that there

exists a p by 1 vector B that is a solution to the equation

~

==
CB=y, -AB"Y . (1)

~

Since A and B differ only in the first p rows, it is easy to verify that

a solution x to the equation Al‘. =y 1is given by
-l - =
=P Wl

We first show that this method of obtaining the solution x will be valid

vhenever the original system Ax = y is consistent,

~

Theorem. If det® # 0 , then

det C = (detAV,det W)

Jdet B =

T

— Hockney actually refers to C-l as the capacitance matrix. Since C may
be singular in our development, we have adopted the present notation.

L




If the system Ax = y is consistent, then Eq. (1) is also consistent.

Proof. Partition B™' in the form

where D, is nbypandba is n by (n-p). It then follows that

1
" 31”1 311’2 I (]
BB " = = ’
A2D1 A2D2 (o} I
and
2 (Mm% A%\ A AR
AB = = .
A2D1 A2D2 0 I
Thus we have
-1—
C= Aln W= A1D1W »
and so

detC = M(lel)dztw
= det (AB™) detW

detA) (det W
detB *

To prove the consistency statement, suppose c"rr =0, Write

AB-]' = ’



and define an n by lvecturf'by

- A
. e o .
“BHX
We then have
T
. [0) ¢ o\/x
(AB-l)i = = 2 .

5 1/\E:

Since the system Ax = y is assumed to be consistent, we therefore have

~

ZTE=O,Hhichilthemu IT(zl-Elzz)-O. But then

(M) (- R - )
/s (crz)r"lf.z
=0 ,

which is the consistency condition for Eq. (1).
The Woodbury formula [18, pp. 123 -12k] for the inverse of a matrix

(B+ FG) is

(n + rc)-l = 37t (1 -F(T+ cn'lr).l sn'l) ‘

This equation has been used in direct methods for solviug the Poisson equation
by George [14], and for the biharmonic equation by Golub [15]. If A is nom-

singular we write



vhere F =W, and G is the p by n matrix given by
-1

For the case in which A is nonsingular, the algorithm we have derived is
equivalent to using the Woodbury formila for A™:.

Suppose that we have a very efficient method for solving equations of
the form Bz =V. The solution of the equation Az =y then proceeds in
the following steps:

(1) Compute C = A, B™'W

(2) Compute X =371y ,

(3) Solve the egquation cg-h-Alg .

The solution x can then be obtained from the formula

xsn'l(gdip) . (2)

1

If it is possible to store the vector X and the matrix B = B™W, then z

can also be camputed from

X =
~

1M

+3p . (3)

The decision whether to use Eq. (2) or Eq. (3) would be made on consideration
of storage requirements, and on the relative speed of solving the system in
Eq. (2) versus multiplying by the matrix in Eq. (3). For problems arising
from elliptic difference equations, it is frequently better to use Eq. (2)
because B has a band structure, but the matrix B may be full.

The type of application we have in mind for this method is one in which

we have to solve a mmber of equations A In this case, we compute

R A
the capacitance matrix and factor it as part of & preprocessing stage. The

solution of each equation Ax, =

x, Z.i. is then approximately as fast as the time




P

it takes to solve two equations Bz = w .
To be specific, let 6(n) denote the mmber of aritlmetic operations
necessary to solve a system Bz = w . Then to compute C and form its LU

decomposition in a preprocessing stage requires approximately

pe(n) + k1p2n + l:2p3

operations (cf. [19, Sec. 2.1]). 1In many cases the matrix .H_ is sparse,
and this estimate is

po(n) + kyp’ ®)

operations, To compute the solution to & particular equation Ax = y using
Eq. (2) takes an additional

26(n) + k,pn + k5p2

operations, If ‘A'l is sparse and we let W = I , this estimate can be replaced
by

20(n) + kp° (5)

operations. To campute a particular solution using Eq. (3) requires

6(n) + k7pn + 1«81::2 (6)

operations. In general this estimate cammot be reduced, because the matrix

B may be full,




o

3. Method of Solution if rank(B) = n-1 . The method derived in Section 2

gives a procedure for finding & p by 1 vector ® such that a solution x

~

to Ax =y also satisfies the equation
&
0
If B is singular, it may not be possible to find such & vector 5 . To show

this, suppose BTv =0 but v £#0 . Inorder for © to exist, we must

satisfy the consistency condition

vT(y+ f &, e.) =0 . (7)

< 5 / ~1
i=1l

TR vTei =0 for 1<i<p and va #£ 0, it is not possible to satisfy

Eq. (7). Houwever, if A is nonsingular this difticulty does not arise,
because then the only vector v satisfying BTV =0 and vTe. =0 for

~ - o1

1<i<p is uis 0.

We will now describe an algorithm we have used when rank(B) = n-1 and
A 1is nonsingular. There are two advantages in treating this particular case.
First, the construction is quite simple, and it is easy to see how the method
could be extended to a more general matrix B . Second, the case rank(B) = n-1
has a special significance in the solution of partial differential equations,
because this condition is satisfied by the matrix corresponding to the

Neumann problem. For simplicity, we assume that the matrix W of Section 2

is the identity matrix.

Theorem 2. Assume that A is nonsingular and rank(B) = n-1 , and let u

~

and v Dbe two non-zero vectors satisfying Bu = BTV = 0 . Then there exists an

~

integer k with 1 <k <p such thet vTek # 0 . Define a constant




TNl
Q = (X ek) )

~

and lit X be a solution to

1

Bx =y - (Oévaf) e

~ o~

For 1<i<p and i #k let 7, bea solution to

BN, =e; - (@vie)e

and let T}k =u. Let C bethe p by p matrix whose i-th column

1y

the vector Al ni . Then C 1is nonsingular, and, if B is the solution to

CB=yy-h %

~

the solution x to Ax =y is given by

_ D
X =X+ B. M.
~ o~ i
Proof. If we partition v in the same way as y , we have
T T T T It T : Ui
AL/=Ale+A222 and BX-Ble+A232.Tnu81f Bz-gand

L 0 we would have ATV =0 . Since A is nonsingular and v £ 0 this

cannot happen, and hence Vlfé

1O

To prove that C is nonsingular, we show that CB =0 implies B =0 .

~ ~

Suppose B 1is an arbitrary vector such that Cg = 9 . Then f = izl Bi I\l

~

i
(@]
-
[o]
H

satisfies Ax = 0, and hence x = O . This implies that Bx

~




Thus B, =0 for 1<i<p and ifk, and the condition x = O then

implies that Bk =0 . Thus B =0, and so C is nonsingular.

Remark. As we discussed in Section 2, the computation proceeds in the following
steps:

(1) Compate (and factor) C ,

(2) Compute % 5

(3) Solve for B .

The solution x can then be obtained from the formula

X =x+ gi B. M.
AN

However, if tle problem arises from a partial diff:rential equation, it is more

efficient computationally to obtain x in the form

I >

A
D= + B u »
~ ~

where X is a solution to

A

D
= =\ b
B sl- W p gt ) Biley - v ey

~




L. Applications to Partial Differential Equations by Imbedding. Suppose we

are given a two-dinrensioneal bounded region R in the x-y plane, and we wish

to find a solution u to the Poisson equation,

Au="° in R »

u=g on OR .,

We assume that this differential equation is approximated by a finite differ-
ence equation (cf, Forsythe and Wasow [13]). Thus we have a finite set of
unknowns {U, |1 <41 <nj} which approximate the solution u at the grid
points., If we denote by Ah a finite difference approximation to the Laplacian
operator A, by Rh the discrete interior of the grid, and by BRh the discrete
boundary of the grid, then the discrete Poisson equation ca: be written in the

form

&,U=f inR
} (8)

U=¢g onBR.h :

Let R.‘:'l be a discrete rectangular region such that R‘h (e Rl; and
anhcnt;uan!; , and let s‘1=aR'han;‘ Extend the functions f and g

to the regiuns R}: and §Rh U BR{1 respectively, and consider the equation

%U

U

(9)

4

f in R, -8,

g on § U BR;1 .

We will solve Eq. (9), and the solution U will then also satisfy Eq. (8).
Equation (9) is a linear equation in the unknowns {Ui l1l<i<n}.

Observe that we may have increased the mmber of unknowns by the imbedding

process, so that D, £n. We write Eq. (9) as a matrix equation AU =V, 4

12




and the matrix A can frequently be chosen to be block trl'diagonal with
tridiagonal matrices as the non-zero blocks (cf. [13]),

let p be the mumber of grid points in Sh . We modify the p rows of

A and Y, corresponding to the equations

and replace them with the equations

AhU=f on sh o

This defines a new matrix B and a new right-hand side V. An equation
BE =

1<l

corresponds 1,0 the difference equation

£ in Rl;
g on BRA

%U

U

. (10)

]

Since R}; is a rectangular region, we have very fast methods for solving
Eq. (10). We can now apply the method of Section 2 to solve the equation
AE = -Y. by using the modified matrix B.

To illustrate this construction, let R be a rectangular region with
ar interior rectangle removed, such as that shown in Figure 1, For simplic-
ity, we assume that the discrete toundary BRh is a subset of OR. The
inbedding rectangle is Ry = R US UT, . The only function extension re-
quired for this example is thei f be defined (arbitrarily) in Sh v Th o
To define this extension, we can set f = 0 in Sh U Th, or we can define f
so that it is contimuous in all of R‘l; . The advantage of using & contiruous
f is that the solution to Eq. (1')is then smooth., However, the direct
methods used to solve Eq. (10) are so accurate that the smoothness of the

solution does not appear to influence the computational results. Therefore,

il




in the examples we have considered, we extend f by setting £ =0 in
S, UT, -

If we let W= I in the method of Section 2, this algorithm is closely
connected with the discrete Green's function for the region Rl; (e£. [13,
pp. 314-318)). In fact, the method is then equivalent to adding suitable
miltiples of the discrete Green's function for the points on sh so that
the boundary conditions on Sh will be satisfied, Since we have Dirichlet
boundary conditions on Sh » by a proper ordering of the unknowns we can write

Al = (I o) .
Since B is positive definite and

c=(1 0)3‘1(1) :
- 0

we see that C is also positive definite in this case. This is advantageous

T

because Cholesky decomposition can then be used to campute an LI~ decomposi-

tion of C (cf. [12, chap. 23]).
If the grid on Rl; has N points on a side, we have n=N°. Inthat

cese, we can solve the system BU = V in approximately

o(N) = 5§ log,N
operations (cf. [11, p. 260]). The preprocessing then takes
5pN2 logel! + 1131)3

operations (cf. Eq. (4)). To solve Ed. (8) for a particular chuice of f
and g by using Eq. (2) with W =1 takes an additional



10 N2 log2 N + k6 p2

uperations (cf. Eq. (5)). If we use Eq. (3) to compute the solution, it

takes an additional
5N°log. N + k,pN + ko p°
sl + K, kg

operations (cf., Eq. (6)). Thus if p > log,N it is faster to use Eq. (2)
to campute the solution., We also observe that for this problem the_matrix
Bl is fuld (25, p. 85], so to store B in using Eq. (3) would require pN2
locations. Thus for large values of p and N it is both faster and more
eccnamical in terms of storage to use Eq., (2) to compute the solution to a
particular equation,

It should be clear that the imbedding procedure can be applied to other
elliptic difference operators with other types of boundary conditions. To
be a practical procedure, we simply require that we have a fast method for

solving the imbedded problem in the rectanguler region.

.

As another example, consider the region shown in Figure 2. This problem
arises in the time-dependent study of a rotating fluid [10], and the fluid surface
is moving slowly. We are given Dirichlet boundary data on Sh » and Neumann

~ t R, -8 . The i i gle i -
boundary data on J.h bh Thie imbedding rectangle is Rh Rh U Sh U Th , and

I

we use Neumann bourdary conditions on BRé . Thus B corresponds to the Neumann
problem on Ré , and tne rank of B is n-1 . The method of Section 3 can then
be applied, and direct methods for solving the rectangular Neumann problem are
<iven in [8].

For an example with the Poisson operator in another geometry, consider

thie region in the 2z -r plane shown in Figure 5. This problem arises in the

W5




time-dependent study of a plasma [21], and & Poisson equation must be solved

at each time step. The boundary conditions are Dirichlet on Sh and Neumarn

on bR.Sll) . We use Neumann boundery conditions on BR,fll) and BR,I;(5 ) and

Dirichlet boundary conditions on BR}’l(z) and BR}'I(LL) for the imbedding

: 2 . N . N . 7 .
region Rh = Rh U Sh U Th . The elliptic difference equation in Rh is solved

by the method of matrix decomposition [8].

16
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5. Agpprlications to Partial Differential Equations by Splitting. There are

many problems for which the imbedding approach is not an economical algorithm.
For example, imbedding the region in a rectangle may introduce an excessively
large mumber of additional uninowns that are not necessary to the solution of
the original problem. Another instance is one in which the differential oper-
ator or the mesh size changes in different parts of the region. In this
section, we give two such examples. In each case, the method of Section 2

can be used to split the problem into two rectangular problems, which can be
solved by the usual direct methods.

Consider the elongated L-shaped region in Figure 4, and the equation

AhU

U

f inR.h ’
g on th .

We assume that points on the line marked Th are all grid points., To define

the matrix B, we replace the equations

AhU=f on T

by the equations

where g has been (arbitrarily) extended to T, - The solution of an equation

BU = z now consists of solving the two rectangular problems

%Ui =f in Rl(li) ’
U, =8 on aRt(xi) 5

for i =1, 2, We can then apply the methcd of Section 2 to solve the original

17
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provlem., This algorithm is similar to one develouped in [ 8, Sec, 9] for
non-}ectangtn.ar regions.

As another example, consider the multiple-material problem shown in
Figure 5, The differential equation is

3% <o(x) %—E)Jr Eb_y (‘\’(Y) %) = flx,y) ,

0, (x) in &V 2

o(x) = x

oe(x) in R( .
The functions al(x), a2(x), and +(y) are assumed to be smooth ., Dirichlet
dats is given on OR, and we require that o%-;-l be contimuous across the
boundary between R(l) and R(g) « The computational procedure is essentially
the same as that for the L-shaped region, The only difference is that in
forming the matrix B we replace the equations for the contimuity of a%—%

across the line 'rh by the equations

As before, the equation BU = V corresponds to the two rectangular problems

ol du
2 (o0 52) + 5 (o ) - fon wa®
w, 9 =6x,y) o 3x®

for i =1, 2. These problems can be solved directly by the method of matrix
decamposition [ 8 s Sec, 8]. A similar method can be used for the case in

vhich +(y) is only piecewise smootk.

18




It is clear that this splitting method can be applied to the Poisson

equation in regions such as that in Figure 5 when differ

ent mesh sizes are
used 1n R(D) gpg p(2

» The method developed in [ 8 » Sec. 8] can also be

adapted to include rectangular problems with irregular meshes,

19
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6. Computational Results. In Table 1 we have tabulaied some computational

results for two regions of the form of Figure 1. In each case, a square

with sides of length 1 has a symmetrically located square removed from its
center, For region 1 the inner square has sides of length -%‘-, and for
region 2 the inner sides are of length -ﬂ‘— . We solve the Poisson equation
with Dirichlet boundary conditions for the function u(x, y) = x° + y= .

i This function was selected because there is no truncation error, and all of

the measured error is due :o inaccuracies in the solution of the difference

f equations, All of the computations were performed on a CDC 6600 computer,

The iterative methods used are:

SOR : point successive overrelaxation [23, p. 58],

SLOR: successive line overrelaxation [23, p. 80] ’

ADI : Peaceman-Rachford alternating direction implicit iteration

[24, Chap. 6].

The iteration parameters used are those for the imbedding rectangle RI; , and
for ADI the parameters for cycles of length four are nalculated by the

Wachspress algorithm (24, Chap. 6], The initial guess is identically zero,

e

and the iterations are terminated when the maximum difference between iterates
is less than 1077,

The direct method used is variant one of the Buneman algorithm [ 8 , Sec. 11l
Preprocessing times are given in Table 2, Computational results for a similar
problem are given in [14],

The problem described in Section 4 for the region in Figure 2 has been
treated by Daly and Nichkols [10]. The mesh used has 23 x L0 = 920 points.

Using the direct method of matrix decomposition, a particular solution requires

about 30 - 50¢% of the time required for a point Gauss-Seidel iterative procedure.

20
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The problem discussed in Section 4 for the region in Figure 3 has been

treated by Morse and Rudsinski [21). The mesh used has 52 x 98 = 5096

points, and the Preprocessing time is approximately 150 seconds. The region

and differential operator are very seldom changed, so the factored capacitance

matrix is stored on magnetic tape, Thus there is essentially no preprocessing

time for the execution of the program. To solve for a varticular solution

requires about 2 seconds, which is approximately ho% of the time required for

& successive line overrelaxation iterative procedure,

21
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Table 1, Computational results for solving the discrete Poisson equation,
Region h P Method Maxinmum Computation Scaled
Error Time (Sec.) Computation
Time
SOR 5.02 (- 6) 3.586 21,866
3l2 16 | sLoR 7.63 (- 6) 2.654 16,183
ADI 2.36 (-6) 1.128 6.878
1 Direct L Lk (-13) 0.164 1.00C
SOR 8.12 (- 6) 29.388 b3,99
3}; 32 | SLoR 7.95 (- 6) 21,42k 32,072
ADI 3.41 (- 6) 5,642 8.446
Direct 1.90 (-12) 0.668 1.000
SOR 2.35 (- 6) 3.570 21.250
?15 32 | SwR 6.48 (- 6) 2.558 15.226
ADI 2.11 (- 6) 0.870 5.179
5 Direct 3.77 (- 13) 0.168 1.000
SOR 2.02 (- 6) 29,624 k3,565
& | & | swr 9.96 (- 6) 20,510 30.162
ADI 3.57 (- 6) 5.332 7.841
Direct 1.54 (-12) 0.680 1.000
2?2

1 ekl




Table 2,

Preprocessing time

for the direct method results in Table 1.

Region h Preprocessing
Time (Sec.)

3i2 1.062

1
3:};- 8.670
3i2 2,188

2
&- 17.698

a3
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